Table I. Photostimulated Reactions of Vinylmercurials

vinylmercurial	reactant	conditions ^a	products	% yield ^b
(E)-Me ₃ CCH=CHHgCl	n-BuSSBu-n	PhH, 17 h	(E)-Me ₃ CCH=CHSBu-n	100
(E)-Me ₃ CCH=CHHgCl	PhSSPh	PhH, 6 h	(E)-Me ₃ CCH=CHSPh	100
(E)-Me ₃ CCH=CHHgCl	PhSeSePh	PhH, 2 h	(E)-Me ₃ CCH=CHSePh	95
(E)-Me ₃ CCH=CHHgCl	PhTeTePh	Ph H, 18 h	(E)-Me ₃ CCH=CHTePh	89
(E)-Me ₃ CCH=CHHgCl	PhSO, Cl	PhH, 4 h ^c	(E)-Me ₃ CCH=CHSO ₂ Ph	84
(E)-Me ₃ CCH=CHHgCl	(EtO), POK	Me ₂ SO, 29 h	(E)-Me ₃ CCH=CHP(O)(OEt),	76
(E)-Me ₃ CCH=CHHgCl	PhP(OBu)OK	Me_2SO , 3.5 h	(E)-Me ₃ CCH=CHP(O)(OBu)Ph	84
(E)-Me ₃ CCH=CHHgCl	p-MePhSO ₂ Na	t-BuOH/H,O, 31 h	(E)-Me ₃ CCH=CHSO, PhMe-p	81 <i>d</i>
(E)-Me ₃ CCH=CHHgCl	n-PrSO ₂ Na	Me_2SO/t -BuOH/H ₂ O, 30 h	(E)-Me ₃ CCH=CHSO ₂ Pr-n	75^d
(E)-Me ₃ CCH=CHHgCl	PhSH	PhH, NaHCO ₃ , 17 h	(E)-Me ₃ CCH=CHSPh	99
(E)-Me ₃ CCH=CHHgCl	t-BuSH	PhH, NaHCO ₃ , 15 h	(E)-Me ₃ CCH=CHSCMe ₃	100
(E)-Me ₃ CCH=CHHgCl	PhCH ₂ SH	PhH, NaHCO ₃ , 5 h	(E)-Me ₃ CCH=CHSCH ₂ Ph	64
(Z)-HOCH ₂ C(Cl)=CHHgCl	PhSH	PhH, NaHCO ₃ , 5.25 h	$HOCH_2C(Cl) = CHSPh$	61
CH ₂ =CHHgCl	PhSH	PhH, NaHCO ₃ , 3 h	$CH_2 = CHSPh$	100
(E)-EtC(OAc)=C(Et)HgCl	PhSH	PhH, NaHCO ₃ , 11 h	EtC(OAc) = C(Et)SPh	92
(E)-Me ₃ CCH=CHHgOAc	PhSH	PhH, 17 h	(E)-Me ₃ CCH=CHSPh	100
(E)-Me ₃ CCH=CHHgOAc	PhCH ₂ SH	PhH, 18 h	(E)-Me ₃ CCH=CHSCH ₂ Ph	97
(Ph) ₂ CH=CHHgBr	MeSSMe	PhH, 8 h	(Ph) ₂ CH=CHSMe	100
(Ph) ₂ CH=CHHgBr	<i>p</i> -MePhSO ₂ Na	DMSO, 40 h	$(Ph)_2 CH = CHSO_2 PhM \leftrightarrow p$	61
(Ph) ₂ CH=CHHgBr	Me ₂ CHI	PhH, 2 h ^c	$(Ph)_2 CH = CHCH(Me)_2$	50
(E)-Me ₃ CCH=CHHgSPh	-	PhH, 3 h	(E)-Me ₃ CCH=CHSPh	99
(E)-Me ₃ CCH=CHHgSBu-n		PhH, 6 h	(E)-Me ₃ CCH=CHSBu-n	100
$(Ph)_2C = CHHgSPh$		PhH, 15 h	(Ph) ₂ C=CHSPh	100
$(Ph)_2 C = C(CH_3)HgSPh$		PhH, 6 h	$(Ph)_{2}C = C(CH_{3})SPh$	100
(E)-PhCH=CHHgSPh		PhH, 6 h	PhCH=CHSPh, $E:Z = 10:1$	100
(E)-n-PrCH=CHHgSPh		PhH, 4 h	n-PrCH=CHSPh, $E:Z = 1.2:1$	100
(E)-n-PrCH=CHHgCl	(EtO) ₂ POK	Me ₂ SO, 11 h	n-PrCH=CHP(=O)(OEt) ₂ , $E:Z = 10:1$	56
(E)-n-PrCH=CHHgCl	<i>p</i> -MePhSO₂Na	Me_2SO/t -BuOH/H ₂ O, 22 h	n-PrCH=CHSO ₂ PhMe- $p, E:Z = 6:1$	71 ^a
(E)-PhCH=CHHgCl	<i>p</i> -MePhSO₂Na	Me ₂ SO/t-BuOH, 19 h	(E)-PhCH=CHSO ₂ PhMe- p , $E:Z > 20:1$	81 <i>ª</i>
(E)-PhCH=CHHgCl	n-BuSH	PhH, NaHCO ₃ , 3 h	(E)-PhCH=CHSBu-n	100
(E)-PhCH=CHHgCl	PhSeSePh	PhH, 2h	(E)-PhCH=CHSePh	90
$CH_2 = CHHgCl$	PhSeSePh	PhH, 2h	$CH_2 = CHSePh$	91
$CH_2 = CHSn(Bu-n)_3$	PhSSPh	PhH, 4h	$CH_2 = CHSPh$	~100

^a Reactants were irradiated with a 275-W sunlamp approximately 6 in. from the Pyrex reaction flask. The sunlamp maintained a temperature of approximately 35-45 °C. The mercurials (3 mmol) in 10-50 mL of solvent were reacted with a stoichiometric amount of the disulfide or PhSO₂Cl, a 10-20% excess of the anions or free thiols, and a 10-fold excess of Me₂CHI. The exclusion of molecular oxygen is essential. ^b Appropriate ¹H NMR, IR, and high-resolution mass spectra were obtained for all products. Satisfactory elemental analyses were obtained for all new compounds except for Me₃CCH=CHTePh (oxidatively reactive), HOCH₂C(Cl)=CHSPh (unstable), and *n*-PrCH=CHP(O)·(OEt)₂, for which an NMR yield is reported. The only previously reported 1-alkenylmercury mercaptide is CH₂=CHHgSR.⁵ ^c Irradiated in Pyrex in a RPR-100 Rayonet reactor at 350 nm. ^d Previously reported in ref 2.

Scheme I

$$RCH == CHHgX + R'Y \cdot (\alpha Z \cdot or A \cdot) \longrightarrow RCH == CH - YR' (Z \circ r A) \longrightarrow HgX$$
$$RCH == CH - YR' (Z \circ r A) + HgX$$
$$HgX + R'Y - YR' \longrightarrow XHgYR' + R'Y \cdot (reaction 1)$$
or
$$HgX + ZQ \longrightarrow XHgQ + Z \cdot (reaction 2)$$
or
$$HgX + A^{-} \longrightarrow Hg^{0} + X^{-} + A \cdot (reaction 3)$$

or

disulfides to participate in reaction 5, although they react readily in reaction 1, may indicate that in the presence of the alkyl disulfide the vinylmercury intermediate ((Ph)₂C=CHHg) at least partially decomposes to yield vinyl radicals which do not lead to chain propagation, possibly because of abstraction of the α -hydrogen atoms of the disulfide.

The reaction scheme attributes a surprisingly high reactivity to the species HgX which may be much more reactive than Hg₂Cl₂ (as, for example, R₃Sn and R₃SnSnR₃). Thus, in DMF Hg₂Cl₂ is disproportionated to Hg⁰ and HgCl₂ but not otherwise reduced by anions such as PhSO₂⁻. Furthermore, Hg₂Cl₂ undergoes no reaction with PhSO₂Cl in PhH (heterogeneous).

Preliminary results indicate that reactions 1-3 or 5 may occur with other 1-alkenylmetals. Thus, we have found that a photostimulated free-radical chain reaction occurs between (*n*- Bu)₃SnCH=CH₂ and PhSSPh to afford CH_2 =CHSPh in essentially a quantitative yield.

Glen A. Russell,* James Hershberger

Department of Chemistry, Iowa State University Ames, Iowa 50011 Received July 25, 1980

Reduction of CO₂ to CO by Transition-Metal Dianions¹

Sir:

We wish to report an unusual CO_2 reduction using electron transfer from transition-metal dianions, in which the oxygen sink is an alkali metal carbonate (eq 1). Since alkali metals provide the ultimate reducing power in the preparations of the transition-metal dianions and the carbon monoxide formed can be photochemically released from the product carbonyl complexes, the overall reaction can be summarized as in eq 2.

$$M_{2}[M'(CO)_{n}] + 2CO_{2} \rightarrow M_{2}CO_{3} + [M'(CO)_{n+1}] \quad (1)$$

$$n = 5, M = \text{Na or Li}, M' = W$$

$$n = 4, M = \text{Na}, M' = \text{Ru or Fe}$$

$$2M + 2CO_{2} \rightarrow M_{2}CO_{3} + CO \quad (2)$$

Treatment of a solution of $Li_2[W(CO)_5]$ in tetrahydrofuran (thf)² with gaseous CO₂ at -78 °C resulted in immediate bleaching

⁽¹⁾ This paper is dedicated to the memory of Professor R. B. Woodward.

of the characteristic orange of the $[W(CO)_{5}]^{2-}$ dianion. After a few seconds Li₂CO₃ began to precipitate. When the mixture was warmed to 25 °C, solution IR spectra showed that [W(CO)₆] was the only carbonyl-containing product produced in significant quantities. After removal of the solvent in vacuo the mixture was extracted with diethyl ether, to leave a 74% yield⁵ of Li₂CO₃. Removal of the ether in vacuo left an 82% yield⁵ of $[W(CO)_6]^6$ (eq 3). When the reaction was repeated with ${}^{13}CO_2$, the sole tungsten-containing product was [W(¹²CO)₅(¹³CO)],⁷ confirming that the added CO_2 was the source of one of the carbonyl ligands in the product $[W(CO)_6]$. The reaction is equally facile and clean when the dianion is introduced as the sodium salt-the reaction of $Na_2[W(CO)_5]^2$ with CO₂ gives an 83% yield of $[W(CO)_6]$, suggesting that the reaction is insensitive to the nature of the counterion.

$$M_2[W(CO)_5] + 2CO_2 \rightarrow [W(CO)_6] + M_2CO_3$$
 (3)

M = Li or Na

Since the dianion precursor, $[W(CO)_5(NMe_3)]$, is prepared by photolytic substitution of a carbonyl in $[W(CO)_6]$ the overall reaction constitutes reduction of CO_2 to CO (eq 2) and is in principle cyclic.

The generality of the reaction is indicated by preliminary results9 which show that $Na_2[Fe(CO)_4]^{10}$ and $Na_2[Ru(CO)_4]^{11}$ will also reduce CO₂, giving solutions of the corresponding pentacarbonyls¹² (eq 4). It has been reported¹³ that $[Ru(CO)_5]$ decomposes

$$Na_{2}[M(CO)_{4}] + 2CO_{2} \rightarrow [M(CO)_{5}] + Na_{2}CO_{3} \quad (4)$$

M = Fe or Ru

photochemically, with evolution of CO, to give $[Ru_3(CO)_{12}]$, from which $Na_2[Ru(CO)_4]$ is prepared. In principle these reactions again allow a cyclic conversion of CO_2 to CO, but in practice $[Ru_1(CO)_{12}]$ recovery after the photolysis is inefficient.¹⁴

The literature contains several earlier reports of reactions of transition-metal ions with CO_2 to give carbonyl complexes or carbonates, but in none of these cases was both carbonyl and carbonate formation demonstrated. Green has reported¹⁵ that Mg, Li, and Al derivatives of $[(\eta - C_5H_5)_2MH_2]$ (M = Mo, W), which behave as if they contain anionic transition-metal moieties, react with CO₂ to give $[(\eta - C_5H_5)_2M(CO)]$ (M = Mo, W) or, in

(2) $Li_2[W(CO)_5]$ and $Na_2[W(CO)_5]^3$ can be obtained in high yield and purity in thf solution by reduction of $[W(CO)_5(NMe_3)]$ or $[W(CO)_6]$ with the appropriate alkali naphthalide. Details of the preparation of these and other transition-metal dianions will be published shortly: J. M. Maher, R.

P. Beatty, and N. J. Cooper, manuscript in preparation.
(3) (a) J. E. Ellis and G. P. Hagen, *Inorg. Chem.*, 16, 1357 (1977); (b) J. Am. Chem. Soc., 96, 7825 (1974)

(4) Identified by comparison of the IR spectrum of a Nujol mull with that of an authentic sample.

(5) Isolated yields are based on the amount of [W(CO)₅(NMe₃)] used to prepare the dianion. Solution IR spectra suggest that the CO₂ reduction is essentially quantitative.

(6) Identified by solution IR spectroscopy and mass spectrometry.

(7) Identified by comparison of the IR spectrum of a pentane solution with that reported in the literature⁸ and by isotopic analysis of the parent and fragmentation peaks in the mass spectrum. The high isotopic purity of the parent ion indicated that no intermolecular scrambling of carbonyl ligand had occurred

(8) H. Haas and R. K. Sheline, J. Chem. Phys., 47, 2996 (1967).

(9) Solution IR data only. These suggest that the reactions are essentially quantitative

(10) J. P. Collman, Acc. Chem. Res., 8, 342 (1975)

(11) (a) M. Green, F. G. A. Stone, and M. Underhill, J. Chem. Soc., Dalton Trans., 939 (1975); (b) M. I. Bruce, J. D. Cotton, and F. G. A. Stone, (12) Dr. J. S. Bradley of Exxon Research and Engineering kindly supplied

IR spectra of [Ru(CO)₅] in thf.

13) F. Calderazzo and F. L'Eplattenier, Inorg. Chem., 6, 1220 (1967). (14) Insoluble, polymeric ruthenium carbonyls are also formed during the photolysis. These orange, iridescent solids have been observed previously by

photolysis. These of ange, indescent solids have been observed previously of other groups: J. S. Bradley, personal communication.
(15) (a) M. L. H. Green, T. Luong-Thi, G. A. Moser, I. Packer, F. Pettit, and D. M. Roe, J. Chem. Soc., Dalton Trans., 1988 (1976); (b) B. R. Francis, M. L. H. Green, T. Luong-Thi, and G. A. Moser, *ibid.*, 1339 (1976); (c) M. L. H. Green, R. E. Mackenzie, and J. S. Poland, *ibid.*, 1993 (1976).

0

Scheme I

$$2 \operatorname{Li}^{*} + \left[W(\operatorname{CO})_{s} \right]^{2^{*}} \xrightarrow{\operatorname{CO}_{2}} \operatorname{Li}^{*} + \operatorname{OC}_{-} \overset{\widetilde{\operatorname{CO}}_{1}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{OC}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{OC}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{OC}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{OC}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{C}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\circ}{\underset{\operatorname{OC}}}}} \overset{\widetilde{\operatorname{CO}}_{2}}{\underset{\operatorname{OC}}{\overset{\ast}{\underset{\operatorname{OC}}}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}{\underset{\operatorname{OC}}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}{\underset{\operatorname{OC}}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}{\underset{\operatorname{OC}}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}{\underset{\operatorname{OC}}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}{\underset{\operatorname{OC}}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}{\underset{\operatorname{OC}}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}{\underset{\operatorname{OC}}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}_{2}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{OC}}} \overset{\widetilde{\operatorname{OC}}}{\underset{\operatorname{O$$

one case, 15c [(η -C₅H₅)₂Mo(CO)Br]PF₆. Evans has observed 16 Na₂CO₃ formation during the reaction of Na $[(\eta - C_5H_5)Fe(CO)_2]$ with CO₂ to give [$\{(\eta - C_5H_5)Fe(CO)_2\}_2$]. Although the use of 13 CO₂ gave dimer containing labeled carbonyls, no evidence was presented for the net formation of CO during this reaction.

It has also been shown that CO₂ will react with neutral complexes of the group 4 metals to give products resulting from deoxygenation and disproportionation of the CO_2 , as illustrated in eq 5,¹⁷ and it has been suggested that this reaction is driven by the strength of the metal-to-oxygen bond formed between the $(\eta$ -C₅H₅)₂Ti moieties and the unusual μ ³-carbonato ligand in the product. It is clear from our results that the formation of $AI(m \cap H) T_{1}(\cap O) = A^{13} \cap O$

$$[(\eta - C_5 H_5)_2 II(CO)_2] + 4^{13}CO_2 \rightarrow [\{(\eta - C_5 H_5)_2 II\}_2 (^{13}CO_3)]_2 + 8CO + 2^{13}CO (5)$$

high-energy transition-metal-oxygen bonds is not a prerequisite for carbonate-forming reactions. Finally, we note an interesting report by Meshitsuka et al.,¹⁸ who have claimed that nickel and cobalt phthalocyanines are active catalysts for the electrode reduction of CO_2 . The authors have pointed out that the metal phthalocyanines would be reduced to their dinegative states at the potentials involved.

The mechanism of the reaction presents an interesting puzzle. We would tentatively suggest a two-intermediate sequence (Scheme I) in which initial nucleophilic attack on a CO₂ molecule forms a carboxylate dianion, intermediate A, probably stabilized by interaction of at least one of the alkali metal cations as shown. Reaction of A with a second molecule of CO₂ could give intermediate B, containing a C_2O_4 ligand, which again would probably be stabilized by counterion interaction as shown. Collapse of B would give $[W(CO)_6]$ and Li_2CO_3 . There are precedents in the literature for both proposed intermediates. Reaction of the nucleophilic cobalt complex K[Co(pr-salen)] with CO₂ gives [Co-(pr-salen)KCO₂(thf)], from which the CO₂ can be removed in vacuo.²¹ This species has been shown by single-crystal X-ray diffraction studies²¹ to contain a CoCO₂K unit similar to that proposed in intermediate A. It is also known that reaction of the electron-rich iridium complex $[IrCl(C_8H_{14})(PMe_3)_3]$ with CO₂ gives $[IrCl(C_2O_4)(PMe_3)_3]$ containing a C_2O_4 moiety similar to that suggested in B¹⁹ and that this species itself decomposes to otherwise uncharacterized species containing complexed CO and CO_2 . The mechanisms of this reaction, of the reaction in eq 5, and of related reactions²⁰ have been discussed in terms of the further reactions of intermediates containing C_2O_4 ligands.^{17,19} It should be noted that the C_2O_4 ligand acts as a bis-chelate ligand in the iridium complex and that there is no suggestion of a metal-carbon double bond in this molecule. This feature of B is reminiscent of the metal-carbon multiple bonding postulated in intermediates such as [W(CO)5COLiPh], formed during the preparation of [W(CO)₅COMePh] from [W(CO)₆].²² A number of other mechanisms might also be suggested for the reaction, and

(19) T. Herkovitz and L. J. Guggenberger, J. Am. Chem. Soc., 98, 1615 (1976).

(20) See references in ref 21.

(21) G. Fachinetti, C. Floriani, and P. F. Zanazzi, J. Am. Chem. Soc., 100, 7405 (1978)

(22) E. O. Fischer and A. Maasböl, Chem. Ber., 100, 2445 (1967).

⁽¹⁶⁾ G. O. Evans, W. F. Walter, D. R. Mills, and C. A. Steet, J. Organomet. Chem., 144, C34 (1978).

⁽¹⁷⁾ G. Fachinetti, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Am. Chem. Soc., 101, 1767 (1979).

⁽¹⁸⁾ S. Meshitsuka, M. Ichikawa, and K. Tamaru, J. Chem. Soc., Chem. Commun., 158 (1974)

it is perfectly possible, for example, that elimination of Li2O from A is followed by reaction with CO_2 to give Li_2CO_3 .

Further experiments are in progress to elucidate the mechanisms of these reactions, to explore their generality, and to develop catalytic variants. We are also investigating the electrochemical implications.

Acknowledgment. We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, the Exxon Educational Foundation, and the National Science Foundation (partial support to J.M.-Grant No. CHE 78-25699) for financial support. We thank Dr. J. S. Bradley of Exxon Research and Engineering for valuable discussions.

John M. Maher,* N. John Cooper*

Department of Chemistry Harvard University Cambridge, Massachusetts 02138 Received June 3, 1980

Silicon-29 Nuclear Magnetic Resonance Study of the Surface of Silica Gel by Cross Polarization and Magic-Angle Spinning

Sir:

The properties of silica gels, especially their surface characteristics, have been the subject of much research and interest for several years.¹⁻³ A variety of physical and spectroscopic techniques have been applied to the study of this interesting system.²⁻¹⁰ One of the more important aspects of chemical research on silica gels recently has been the development of stationary phases for catalysis and for chromatography by covalent attachment of appropriate moieties to the silica gel surface. As part of a program of study of such systems by NMR,¹¹ we have addressed the structure of the silica gel surface by ²⁹Si NMR, using cross po-larization and magic-angle spinning (CP/MAS).¹²⁻¹⁶ Lippmaa and co-workers have very recently reported a ²⁹Si NMR study of solid silicates.12

By using CP/MAS techniques, one can obtain ²⁹Si NMR spectra on silica gel in reasonable times (minutes to hours) and with a highly useful level of resolution. The ²⁹Si-¹H cross polarization restricts detection to silicon nuclei that are near protons, i.e., at or near the surface. Figure 1 shows a typical ²⁹Si CP/MAS spectrum, obtained on a JEOL FX-60QS spectrometer, of SG-2 silica gel, prepared by the method of Peri and Hensley (without the autoclave step).³ The spectrum shows peaks at -109.3, -99.8, and -90.6 ppm (relative to liquid Me₄Si), which can be identified with silicon sites in a reasonable surface model.

The studies of Marsmann¹⁷ on silicate-water glass solutions

- J. A. Hockey, Chem. Ind. (London), 57 (1965).
 H. P. Boehm, Angew. Chem., Int. Ed. Engl., 5, 533 (1966).
 J. B. Peri and A. L. Hensley, Jr., J. Phys. Chem., 72, 2926 (1968).
 M. R. Basila, J. Chem. Phys., 35, 451 (1961).
 A. J. VanRoosmalen and J. C. Mol, J. Phys. Chem., 83, 2485 (1979).
 W. Hertl and M. L. Hair, J. Phys. Chem., 72, 4676 (1968).
 D. Fiat, J. Reuben, and M. Holman, J. Chem. Phys., 46, 4453 (1967).
 L. R. Snyder and J. W. Ward, J. Phys. Chem., 70, 3941 (1966).
 H. Pfeifer, Phys. Lett. C, 26, 296 (1976).
 L. B. Schreiber and R. W. Vaughan, J. Catal., 40, 225 (1975).
 G. E. Maciel, D. W. Sindorf, and V. J. Bartuska, J. Chromatogr., in ess
- press
- (12) E. Lippmaa, M. Magi, A. Samoson, G. Englehardt, and A.-R. Grimmer, J. Am. Chem. Soc., 102, 4889 (1980).
- (13) A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys., 59, 569 (1973).
- (14) J. Schaefer and E. O. Stejskal, Top. Carbon-13 NMR Spectrosc., 3 (1979).
- (15) J. Schaefer and E. O. Stejskal, J. Am. Chem. Soc., 98, 1031 (1976). (16) F. P. Miknis, V. J. Bartuska, and G. E. Maciel, Am. Lab., (Fairfield,
- Conn.), 11, 19 (1979).
- (17) H. C. Marsmann, Z. Naturforsch., B, 29, 495 (1974).

Figure 1. ²⁹Si CP/MAS spectrum of silica gel (SG-2) obtained at 11.88 MHz (1014 scans, 20-ms contact times, 1-s repetitions).

Figure 2. Plot of ²⁹Si CP/MAS amplitudes (relative scale) as a function of Hartmann-Hahn contact time. Similar results were obtained from integrated areas. (Δ) Data for -99.8-ppm resonance; (O) data for -109.3-ppm resonance; (D) data for -90.6-ppm resonance.

Table I. Summary of Cross Polarization Relaxation Results on Silica Gel

structural ty pe ^a	δ _{Si} ^b	T_{SiH} , ms	$T_{1\rho H}^{d}$ ms	Mae ^e
$(HO)_2 Si^* (OSi \ll)_2 HOSi^* (OSi \ll)_3 Si^* (OSi \ll)_4$	-90.6 -99.8 -109.3	$\begin{array}{c} 2.3 \pm 0.2 \\ 2.9 \pm 0.1 \\ 12.7 \pm 1.7^{f} \end{array}$	20.3 ± 1.4 22.1 ± 0.8 21 ^g	$\begin{array}{r} 6.3 \pm 0.2 \\ 21.7 \pm 0.4 \\ 18.8 \pm 0.5 \end{array}$

^a The silicon nucleus of interest is indicated by an asterisk. The structural assignments are based on chemical shift arguments given in the text. ⁶ Chemical shifts in ppm with respect to liquid Me_4 Si; higher numbers correspond to lower shieldings. ⁶ ²⁹Si-¹H cross polarization relaxation time in milliseconds. ^d Proton spinlattice relaxation time in the rotating frame in milliseconds. ^e Magnitude of the maximum available magnetization in arbitrary, relative units. f As the cross polarization time for $Si(OSi \ll)_a$ is rather large, an accurate measure requires that the radiofrequency fields be extremely well matched over the entire sample. Hence, the value 12.7 ms should be considered qualitative. ^g This value was chosen as an average of the other two $T_{i\rho H}$ values and used as a constraint on the least-squares analysis for this peak. In an unconstrained analysis the value 33 ± 9 was obtained for $T_{i\rho H}$; the corresponding T_{SiH} and $M_{\alpha e}$ values were 9.0 \pm 2.1 ms and 13.9 \pm 1.7, respectively.

provide the following ²⁹Si chemical shifts for the relevant structural types of interest here: -107.2 ppm, Si*(OSi≤)₄; -94.6 ppm, HOSi*(OSi \leftarrow)₃; -86.6 ppm, (HO)₂Si*(OSi \leftarrow)₂. Considering bulk susceptibility differences (for which corrections were not made),

⁽¹⁾ J. A. Hockey, Chem. Ind. (London), 57 (1965).